
POSTER 2011, PRAGUE MAY 12 1

Scaling out data preprocessing with Hive

Gábor MAKRAI1, Zoltán PREKOPCŚAK2

1,2Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics,
Magyar Tudósok körútja 2., H-1117, Budapest, Hungary

makrai@tmit.bme.hu1, prekopcsak@tmit.bme.hu2

Abstract.

We introduce a user-friendly graphical data preprocessing
application based on Hive, one of the well known open-
source distributed warehouse systems. It is comfortable, and
easy to use for preprocessing purposes, but to prove usabil-
ity of this application, we created measurement a framework
to ensure precise results. These results show that our ap-
plication has outstanding scaling capability in the case of
increasing data amount and increasing number of applied
computers. We conclude that this is a good solution for
medium and large scale data preprocessing.

Keywords
Hadoop, Hive, large-scale data processing, RapidMiner

1. Introduction
Google [1] encountered a serious problem when its ser-

vices were becoming worldwide. At the same time with this
amazing growth, it had to ensure continuity of its own ser-
vices, so it needed a reliable, scalable, distributed compu-
tational and storage system. It decided to build own system
from everyday components, because the cost of maintenance
is smaller than the unique ones and in this case reliability
is the most important issue. After 2005, Google decided
to open the source of its system, and one of the successors
is Hive [2], which is a perfect solution for handling very-
large scale data. Not only Google encountered this prob-
lem [3]. Many companies were suffering from this, espe-
cially where historical data has to be stored (telecommuni-
cation and financial sector) and where huge amount of data
is created through the experiments (bioinformatics, astron-
omy, and chemical sciences).

Companies need scalable data storing and processing
solutions to handle this amount of data [2, 4]. Commercial
solutions are very good in optimization, but they are imple-
mented in a single computer approach. This means, if a com-
pany want to handle larger database, it has to buy a larger
machine. This ”scale-up” philosophy leads to evolution of

very expensive high-end server computers. As we mentioned
before, Google solved the problem another way [5]: it uses
large number of computers to handle data. In that case, if
a problem needs larger database, it is enough to add more
computers to the current cluster. This is the ”scale-out” phi-
losophy, which gives much cheaper solutions than the previ-
ous one.

As Larose mentioned in his book [6], one of the base
paradigm of data mining is processing large data. The size
of data often larger than a single computer’s capacity. In
those situations, scale-out solutions can be very useful, be-
cause they can use the overall capacity of the given cluster.
Often used data mining algorithms can be parallelized (not
all of them and sometimes they do not have perfect parallel
capabilities).

Today’s data mining tools and environments have
graphical interface [7] to easily create a complex data min-
ing process. Our goal is to create an user-friendly graphical
interface for our application.

In this paper, we introduce our user-friendly graphical
application, which can use the strength of Hive to achieve
very good performance in data preprocessing. The rest of the
paper is structured as follows. In Section 2, we briefly review
the history of Hadoop and Hive. Then in Section 3, we de-
scribe the precise details of implementation decisions, while
in Section 4, we give the results of the measurement. Finally,
we conclude and outline some ideas for future work.

2. Background
As previously mentioned, Google developed a dis-

tributed system to handle the continuously growing amount
of data. It introduced the Google File System [1] in 2003.
After that in 2005, it introduced MapReduce [5], which was
an innovative approach of distributed computation philos-
ophy. When the implementation of GFS and MapReduce
reached the desired level, source codes of MapReduce and
GFS were given to Apache Foundation [2], and the Apache
Hadoop was born. It contains both previous elements:



2 G. MAKRAI, Z. PREKOPCSÁK, SCALING OUT DATA PREPROCESSING WITH HIVE

• Hadoop Distributed File System: fault tolerant, scal-
able, simple expandable, highly configurable dis-
tributed storage system [2]

• Hadoop MapReduce: software framework for easily
writing applications which process vast amounts of data
in-parallel on large clusters of commodity hardware in
a reliable, fault-tolerant manner [2]

In the world of MapReduce [5, 8, 9], the problem (large
input data) splits into many pieces and these pieces are given
to map processes. The outputs of these map processes are
given to many reduce processes. The reduce processes are
the final stage of the execution. They have to create the final
results of the problem. Data in input and output of both, map
and reduce processes has to be key/value pairs. The frame-
work is able to distribute to data between processing nodes
based on value of key field of these pairs. These distributed
systems ensure fast software development, because the pro-
grammers have to care for only map and reduce programs.
Hadoop systems are ready for created map and reduce pro-
grams, and they will use every processing node in the cluster
to utilize the available computational performance.

Fig. 1. MapReduce parallel programming model

Hadoop Hive [2] is one of the many Hadoop-related
sub-projects which were started by Apache Foundation. It is
Hadoop’s solution for data warehouses, and it was created to
handle very large scale data (hundreds of terabytes). This is
a noSQL solution, which means it stores the data different
way from the relational database management systems: data
tables are stored in plain text file format on the distributed
file system (of course, there are many optimization opportu-
nities: compressed file storing method, sequence file in place
of text file, etc.). Users of Hive has to work in poor circum-
stances, because Hive has no graphical user interface.

3. Implementation
In this chapter we introduce implementation details of

our application. Main goal of this was to enable user-friendly
graphical scale out data preprocessing. Preprocessing part of
data mining processes is very important, because data min-
ing algorithms require clean and error-free data. Usually
data preprocessing takes more than 60 percent of the job. [6]
As Larose mentioned in his book [6], this task consists of the
following sub-tasks:

• Filtering fields (table columns) and records (table en-
tries): avoiding obsolete and redundant data

• Handling missing values: replacing NULL values

• Detecting outlier data, which lead to wrong result

• Transforming data to the desired format for applied data
mining algorithms

It is an important thing to realize, that most of these
functions can be implemented with standard SQL queries,
so basically they can be implemented with Hive as it has a
query language similar to SQL.

We decided to integrate our extension to an existing
data mining environment, because users will be able to use
our application in a similar way as they have used this envi-
ronment before. They do not have to use a new, unfamiliar
application to do their work. One of our goal was to suit
our application to the existing environment, so much so that
the users do not realize the differences between the existing
environment, and our application.

We chose RapidMiner1 for our programming environ-
ment, because it is one of the best known open-source data
mining tools and it has a clean graphical user interface. It is
written in Java, and the source code is well documented, so
extensions can be easily created. In RapidMiner, the atomic
element is the ”operator”. There are several kinds of operator
groups (import, data transformation, modelling, etc.). Users
can create a process in operator flow approach: they can put
operators into the process and connect them to each other,
so they can describe a complex task with them and their
connections. The key of the success of RapidMiner is the
professional meta data description of the connections which
allows the average user to understand precisely each step of
the process. Figure 2 shows a sample process in RapidMiner.

We have implemented the basic transform functions for
preprocessing tasks:

• Column filter: select the desired columns

• Data filter: select the desired rows (users can enter ex-
pression)

1http://rapid-i.com/



POSTER 2011, PRAGUE MAY 12 3

Fig. 2. Sample clustering process in RapidMiner

• Column generation: generate newly calculated columns
(users can enter expression)

• Aggregate: aggregate functions (like GROUP BY in
SQL)

Finally, we created the test data sets. All of them had
the same structure:

• ID column: unique integer identifier

• integer columns: 10 randomly generated integer type
columns

• real columns: 10 randomly generated double type
columns

We created 7 different size data sets: 128MB (0.5 mil-
lion records), 256MB (1 million records), 512MB (2 million
records), 1GB (4 million records), 2GB (8 million records),
4GB (16 million records) and 8GB (32 million records).

4. Results
In this section, we present our measurement results.

This includes performance comparison results between our
user-friendly application and the built-in RapidMiner solu-
tion, and includes our scalability measurement results of our
application. We created three different test scenarios:

• Filtering: select all columns with filtering expression
(filter out approximately 50 percent of records)

• Data generation: select four columns (two integer, two
double), and create both sum columns

• Aggregate: select two columns (one integer, and one
double), and create min, max, and average value
grouped by a different integer column

Fig. 3. Filtering on small data sets

Fig. 4. Filtering on large data sets

Every scenario started with reading data from the avail-
able storage system (hard disk or distributed file system), and
ended with saving data to the same place.

We used the following test environments to create these
results:

• Single computer: this was a server that had large com-
putational and storage performance (Sun Fire X4100
Server), in these cases we used the basic RapidMiner
to run the scenarios

• Hadoop clusters: components were computers with
medium processing capabilities (AMD desktop com-
puters), in these cases we used our application

Figure 3 and Figure 4 show the results of filtering sce-
nario. As we expected, processing time of our application is
inversely proportional to the number of the applied process-
ing computers. Result of the single computer proves, that
the processing time strongly depends on the speed of the
storage system, because the read and write operations cost
much more time than processing the data in memory. We
discovered a limitation of RapidMiner in this test scenarios:
it cannot handle data over 1 GB, because it tries to fit the
whole dataset in the memory.

On the other hand, results of Hadoop clusters show the
expected scaling performance (in the meaning of increasing



4 G. MAKRAI, Z. PREKOPCSÁK, SCALING OUT DATA PREPROCESSING WITH HIVE

Fig. 5. Data generation on small data sets

Fig. 6. Data generation on large data sets

amount of data and increasing applied performance capac-
ity) except the cases of operations with small data. In these
cases our extension shows constant results. The reason of
this behaviour is based on the steps of MapReduce applica-
tions: usual inputs of MapReduce (and Hive) tasks are much
bigger than these data, and input data splitting algorithm is
not optimal for this amount of data, which resulted less dis-
tributed tasks than the number of processing units. The size
of the smallest test data is 128MB, the default block (this is
the atomic element of file storage, the blocks read from and
write to the storage in one piece) size in the distributed stor-
age system is 64MB. This means that the splitting algorithm
created two tasks for the whole cluster. The smallest cluster
contains 4 processing node, so in this case only 50 percent
of the computers worked on the problem. With the growth
of data amount, this constant processing time changed to the
expected linear one. Furthermore, we expected constant ini-
tialization time, which takes approximately 10-15 seconds
before each MapReduce job. Because of this initialization
time, our application is not suitable for real-time data pre-
processing, but perfect for off-line data analysis.

Figure 5 and Figure 6 show the results of the next sce-
nario, which is data generation. We experimented the same
performance anomaly as the previous scenario: using our
solution to solve the small problems resulted constant pro-
cessing time.

Finally, Figure 7 and Figure 8 show the result of last
scenario,which is aggregation. We did not expected any
anomaly. Our application had the same performance advan-
tage as we had experienced previously. But we realized a
Hadoop specific performance feature. In the first scenario,
the output data was approximately 50 percent of the whole
data, because of the select statement. In the second sce-
nario this quantity was smaller, because we selected only
four columns, and their calculated columns. In the last sce-
nario, the output data was minimal, because of the behaviour
of aggregate functions. We expected relatively increasing
performance with the decrease of output data compared to
the single node performance. This behaviour interconnected
with the data storage method of the distributed file system:
it uses replicated file storing, so when a file is being saved
to it, it will spread the file’s blocks in the cluster, which isa
slow process, because of the speed of the network.

These test scenarios have proved that our application
has good scalable performance and it is usable even if small
number of processing computers is used for preprocessing.

Fig. 7. Aggregate on small data sets

Fig. 8. Aggregate on large data sets

5. Conclusion
We have presented a user-friendly graphical data pre-

processing application, which solves the problem in a dis-
tributed way. The results show that it can produce good per-



POSTER 2011, PRAGUE MAY 12 5

formance in the case of few applied computers and small
amount of data, in contempt of the original purpose of Hive.
We implemented import, preprocessing and export functions
for Hive. Our next task is to extend this application with
distributed data mining algorithms, which leads to a fully
distributed data mining tool.

Acknowledgements
We would like to thank the Department of Telecom-

munications and Media Informatics, Budapest University of
Technology and Economics, especially Robert Szabó, PhD,
for accessing us to one of the laboratory in our department
for measurement purposes. Without this, our comprehensive
measurement would have not been possible.

References
[1] S. GHEMAWAT, H. GOBIOFF, S. LEUNGThe Google file system,

SIGOPS Oper. Syst. Rev. 37, 2003.

[2] C. LAM Hadoop in Action, Manning, 2010.

[3] T. HEY, S. TANSLEY, K. TOLLE The Fourth Paradigm: Data-
Intensive Scientific Discovery, Redmond, 2009.

[4] S. OWEN, R. ANIL, T. DUNNING, E. FRIEDMANMahout in Action,
Manning, 2011.

[5] J. DEAN, S. GHEMAWATMapReduce: simplified data processing on
large clusters, Communications of the ACM, 2008, 107-113.

[6] D. T. LAROSE Discovering Knowledge in Data: An Introduction to
Data Mining, Wiley-Interscience, 2004

[7] I. MIERSWA, M. WURST, R. KLINKENBERG, M. SCHOLZ, T. EU-
LER YALE: Rapid Prototyping for Complex Data Mining Tasks, Pro-
ceedings of the 12th ACM SIGKDD International Conference, 2006

[8] C. RANGER, R. RAGHURAMAN, A. PENMETSA, G. BRADSKI,
C. KOZYRAKIS Evaluating MapReduce for Multi-core and Multipro-
cessor Systems, in Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, 2007.

[9] D. GILLICK, A. FARIA, J. DENERO Mapreduce: Distributed
computing for machine learning, 2008., [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.111.9204

About Authors. . .

Gábor MAKRAI is a second year software engineering
MSc student at Budapest University of Technology and Eco-
nomics, specializing in infocommunication systems. He got
involved in research works of data mining group of his de-
partment.

Zolt án PREKOPCSÁK is a PhD student at Budapest Uni-
versity of Technology and Economics. His research topic
is pattern classification in time series with applications in
human-computer interaction and ubiquitous computing.


