
Radoop: Analyzing Big Data with

RapidMiner and Hadoop

Zoltán Prekopcsák, Gábor Makrai, Tamás Henk,
Csaba Gáspár-Papanek∗

Budapest University of Technology and Economics, Hungary

Abstract

Working with large data sets is increasingly common in research
and industry. There are some distributed data analytics solutions like
Hadoop, that offer high scalability and fault-tolerance, but they usually
lack a user interface and only developers can exploit their functionali-
ties. In this paper, we present Radoop, an extension for the RapidMiner
data mining tool which provides easy-to-use operators for running dis-
tributed processes on Hadoop. We describe integration and development
details and provide runtime measurements for several data transforma-
tion tasks. We conclude that Radoop is an excellent tool for big data
analytics and scales well with increasing data set size and the number
of nodes in the cluster.

1 Introduction

Working with big data sets has become increasingly common in many areas.
A recent Gartner survey identified data growth as the largest challenge for
enterprises [1]. Another study from EMC projects that there will be a 45-fold
growth of annual data in the next 10 years [7]. Information and data overload
has never been as problematic as nowadays. For many years, storing data was
as easy as loading it into a relational database, and advanced data analytics
solutions were able to find patterns and extract useful information from those
databases.

However, in some areas, data growth has reached the point where a single
relational database is not enough. This big data phenomenon has appeared in
areas like meteorology, genomics, biological research, Internet search, finance,
and many more [10]. The term Big Data is used to describe data sets from a

∗prekopcsak, makrai, henk, gaspar @tmit.bme.hu



few hundred gigabytes to tens of terrabytes or even more. The usual answer to
data growth problems has been to scale up and put more storage and processing
power in a single machine, but current computer architectures could not keep
up with the growth of storage and processing needs. An alternative approach
has appeared which is to scale out to more computers and create a distributed
infrastructure of hundreds or even thousands of computers.

Distributed computing is a great promise for handling large data, but it
lacks the toolset that we are familiar with on a single machine. It needs new
programming paradigms and new tools that we can use for data analytics.
There are many such projects which aim to solve efficient data access and
provide different data analytics functions in a distributed environment, but
they usually need complex command-line mechanisms or even programming
to make them work.

In this paper, we present an extension to the RapidMiner data mining
suite, which hides all the complexity of distributed data analytics and pro-
vides big data processing capabilities in the familiar analytics environment.
In Section 2, we present Hadoop and its subprojects, and some related works
with RapidMiner. Section 3 describes the integration and development de-
tails and Section 4 presents the user interface. We provide some performance
measurements in Section 5 and describe future ideas at the end.

2 Background

The first step in the widespread use of distributed data processing was the
publication of the Google File System [8] in 2003, and the MapReduce pro-
gramming paradigm [6] in 2005. The Apache Hadoop project was inspired and
built around these ideas and it contains both elements:

• Hadoop Distributed File System: fault-tolerant, scalable, simply expand-
able, highly configurable distributed storage system [4]

• Hadoop MapReduce: software framework for easily writing applications
which process vast amounts of data in parallel on large clusters of com-
modity hardware in a reliable, fault-tolerant manner [11]

In the MapReduce programming paradigm, the input data is splitted into
many pieces and these pieces are given to map processes running on different
machines. Then the outputs of these map processes are given to many reduce
processes which are the final stages of the execution. This model can be seen
on Figure 1. All input and output data structures are key/value pairs and the
framework is able to distribute data between processing nodes based on the key
of these pairs. Working with key/value pairs does not imply any restrictions,
because the key and the value can be any object types. MapReduce-based



distributed systems ensure fast software development, because the developer
only needs to care about map and reduce methods. Hadoop is able to run
MapReduce algorithms on unlimited number of processing nodes and it opti-
mizes task distribution in a way that data communication overhead is minimal
between the machines. In case of hundreds or thousands of processing nodes,
it needs to handle faulty machines and network problems, because these events
occur quite often in big clusters.

Figure 1: MapReduce parallel programming model

Apache Hive is one of the many Hadoop-related sub-projects. It is the
Hadoop solution for data warehousing, and it was created to handle very large
scale data (even hundreds of terabytes) efficiently. Hive has a SQL-like query
language called HiveQL and a JDBC interface for standardized access, but the
most common way of working with Hive is the command line.

There are several other Apache projects in the area of data analytics, and
Mahout is the most important from these. Mahout is a collection of scalable



machine learning algorithms that run on the Hadoop platform [14]. After the
publication of the MapReduce programming paradigm, there has been a sig-
nificant interest in the machine learning community, and numerous algorithms
have been described according to the MapReduce approach [5, 9] and most of
these are already implemented in Mahout.

All these Hadoop-related projects are in heavy use at companies working
with big data, but they usually lack an easy-to-use interface and they are hard
to learn. On the other side, data analytics on a single machine is available for
everyone: there are excellent commercial and even open-source solutions like
Weka, RapidMiner and KNIME. RapidMiner [13] is one of the most popular
and it has a clean user interface that makes it easy to learn. Furthermore,
RapidMiner is extendable, so developers can provide additional functionality
to the basic software.

In this paper, we present the integration of Hadoop HDFS, Hive and Ma-
hout functionalities in the RapidMiner environment, so these complicated dis-
tributed processes can be used with RapidMiner’s simple operator flow in-
terface. We are not aware of any general integration project similar to this,
but there has been some previous work on integrating several specific Hadoop
functions to RapidMiner [2, 3].

3 Integration of RapidMiner and Hadoop

To enable Hadoop integration in RapidMiner, we have created an extension
called Radoop. This extension provides additional operators for RapidMiner
and it communicates with the Hadoop cluster to run the jobs. We have decided
to reuse certain data analytics functions of Hive and Mahout because they are
highly optimized. The overall architecture can be seen on Figure 2.

We have designed the extension to achieve a close integration and provide
functionalities from Hadoop that are commonly used in memory-based Rapid-
Miner processes. For this, we received aggregated operator usage statistics
from Rapid-I and implemented all important operators from the top of the
list. We also wanted to keep the convenient RapidMiner features like meta-
data transformations and breakpoints which make the analysis design process
much easier and more error-free.

The creation of a Radoop process begins with adding the RadoopNest
meta-operator. It contains general settings for the cluster (like the IP address
of the Hadoop master node), and all other Radoop operators can only be used
inside this meta-operator. In the following, we first describe data handling
and the several possibilities of uploading the data to the cluster. Afterwards,
we discuss the data preprocessing and modeling operators of Radoop.



Radoop

Figure 2: Overall architecture of the RapidMiner-Hadoop integration

3.1 Data handling and I/O integration

In RapidMiner, data tables are ExampleSet objects and normally stored in
memory. In Radoop, we store data tables in Hive and we use the HadoopEx-
ampleSet object to describe it. It is very important to note that the HadoopEx-
ampleSet only stores several pointers and settings, but all data is stored in Hive
on the distributed file system, so there is no significant memory consumption
during Radoop processes.

We have implemented Reader and Writer operators to enable transferring
large data files from right inside RapidMiner. We have overridden basic Rapid-
Miner Reader operators, so the parsing of different data formats are done by
the original parsers and then the data is loaded to a Hive table instead of



a memory-based ExampleSet. It is the same with Writers, that the output
format is created by RapidMiner and we only change the ExampleSet to a
HadoopExampleSet as an input. Thanks to this modular process, we support
most file formats for read and write operations that RapidMiner has built-in
support for.

Reader and Writer operators work with parsing every row in the dataset
which has an overhead, so big CSV files can also be uploaded to HDFS and
loaded to Hive from the usual command line interface, and we have a Retrieve
operator that can access them from RapidMiner. Store and Retrieve are ex-
tremely powerful operators in RapidMiner to write and read back intermediate
results. We have the same operators in Radoop, so after you have uploaded
your input file once over the network, you can use fast Retreive and Store
operations to access and save the resulting Hive tables.

Again, all these operators work with a very limited memory footprint, so
they can easily handle hundreds of gigabytes or even larger data sets.

3.2 Data transformations

All data miners know that data analytics projects need a lot of effort for pre-
processing and cleaning the data. It is usually said that 80% of the work
consists of preprocessing and only 20% is modeling and evaluation. Rapid-
Miner has an excellent mechanism to support powerful data transformations
by creating views during the process and only materializing the data table in
memory when it is needed.

We do the same by using views in HiveQL and only doing expensive data
materialization (writing the result table to the distributed file system) when it
is needed. It ensures better performance as Hive will only materialize cascaded
views and it can also optimize the query.

We support many data transformations that can be expressed as HiveQL
scripts. It includes selecting attributes, generating new attributes, filtering ex-
amples, sorting, renaming, type conversions, and many more. We also support
aggregations and joining tables and it is possible to add more advanced trans-
formations to Hive by user-defined functions (UDF). These operators can be
used with the same name and with similar settings to the normal data transfor-
mation operators, only the small Hive icons sign that they run on a distributed
Hadoop cluster.

3.3 Data mining and machine learning

Mahout has an increasing number of machine learning algorithms already im-
plemented for Hadoop, so our intention was to integrate it with RapidMiner
and use these highly optimized implementations for modeling in Radoop. It
turned out that Mahout has a unique way of handling input and output data



[14], so this integration process is more complicated, but we have already man-
aged to integrate the k-means clustering algorithm and more clustering and
classification methods (like decision trees and naive Bayes) will be added in
the coming months.

4 User Interface

As we have described in Section 3, every Radoop process starts with adding
a RadoopNest operator which can be seen on Figure 3. The global settings
include a Hive table prefix for the project, the IP address of the Hadoop master
node and other port settings. All other operators will run in the nest and use
these settings for communicating with the cluster.

Figure 3: Settings of the RadoopNest operator

All Radoop operators can be accessed from the usual operator panel of
RapidMiner, under the Radoop category. These are operators implemented for
this project and they can be seen on Figure 4. However, there are other built-in
RapidMiner operators which work seamlessly with Radoop. For example, the
Multiply operator can create branches, the Subprocess can group operators,
or the macro operators can define global variables.

All the integration effort targeted that the user interface of Radoop should
be identical to the built-in functionalities of RapidMiner. The process design
is the same under the RadoopNest like it is in core RapidMiner, and there are
similar operators that can be used on Hadoop.



Figure 4: Currently available operators of Radoop

5 Performance measurements

We have created measurements on how Radoop performs and scales with the
size of the data set and the number of processing nodes. We have used 4 to
16 nodes in the cluster and experimented with 128 MB to 8 GB data sets. We
have also included measurements with a single machine RapidAnalytics server
solution for reference.

The first experiment retrieves the table from the (distributed) file system,
filters out half of the rows, and writes the result back to the (distributed) file
system. The same experiment has been run for data sizes of 128 MB to 1
GB with RapidAnalytics and 128 MB to 8 GB with Radoop. The RapidAn-



alytics experiment was limited to only 1 GB because 2 GB could not fit into
the available memory. The runtime results can be seen on Figure 5. Single
computer results are from RapidAnalytics and multiple node measurements
are from Radoop.

0 

50 

100 

150 

200 

250 

300 

128  256  384  512  640  768  896  1024 

Ti
m
e 
(s
) 

Data (MB) 

Single computer  4 nodes  8 nodes  12 nodes  16 nodes 

0 

100 

200 

300 

400 

500 

600 

0  2048  4096  6144  8192 

Ti
m
e 
(s
) 

Data (MB) 

4 nodes  8 nodes  12 nodes  16 nodes 

Figure 5: Filter runtime results for small data sets (on the left), and large data
sets (on the right)

We can see that both RapidAnalytics and Radoop scales linearly with
increasing data size, and Radoop finishes the job much faster, even with 4
processing nodes. The only exception is that Hive has a constant runtime for
small data sets. This is caused by the 64 MB default block size in Hadoop
and the fact that each block is processed by only one machine. In case of a
128 MB data set, only two nodes are working on the problem, so the constant
time that we see is the time needed for one node to process one block. Hence,
these results can be improved by changing the default block size.

This enlightens the fact that Hadoop and Hive are not intended for real-
time use. Memory-based solutions might perform better on small data sets,
but Hadoop has great scalability and the same process will also run in linear
time for hundred or thousand times more data.

The second experiment included a more complex process. After loading the
data set, we select several attributes, filter out some examples and aggregate
according to an attribute. In a web analytics example, it could be a web
log from which search robots are filtered out and the number of visits are
aggregated for each page. After this, we rename newly created columns and
write back the result. The whole process can be seen on Figure 6.

This process includes the creation of four HiveQL views and finally a result
table, but the Hive query optimizer is able to express it as a single HiveQL
query and the result is acquired with only one stage of map and reduce jobs.
The runtime results on Figure 7 show that RapidAnalytics is quite slow on a
single machine and Radoop can process 8 times more data on 8 nodes with
approximately the same runtime. It shows that task distribution has a minimal



Figure 6: Operator flow of a Radoop process

0 

50 

100 

150 

200 

250 

0  2048  4096  6144  8192 

Ti
m
e 
(s
) 

Data (MB) 

Single machine  8 computers  16 computers 

Figure 7: Runtime results for a complex data transformation process

overhead, and Radoop can be a good choice even for data sets of a few hundred
megabytes.

Further measurements with Hive are available in our previous work [12].



6 Conclusion and future work

We have presented Radoop, a Hadoop extension for the popular RapidMiner
data mining tool. The complexities of running jobs on a distributed cluster
are covered and the close integration keeps the excellent process design and
validation features of RapidMiner.

Our measurements show that Radoop scales well with increasing data size
and increasing number of Hadoop processing nodes, so it is possible to effec-
tively analyze data far beyond the size of main memory. However, performance
gain over the single machine solution can be seen even for data sets of a few
hundred megabytes and even with only 4-8 processing nodes.

Future work will include new data transformation operators, additional
clustering and classification algorithms from Mahout, some improvements on
the user interface, and a monitoring panel which will enable the investigation of
long running Hadoop processes. The beta version of Radoop will be available
at http://radoop.eu.

References

[1] A. Adams and N. Mishra. User Survey Analysis: Key Trends Shaping the
Future of Data Center Infrastructure Through 2011. Technical report,
Gartner, 2010.

[2] A. Arimond. A Distributed System for Pattern Recognition and Machine
Learning. Master’s thesis, TU Kaiserslautern and DFKI, 2010.

[3] A. Arimond, C. Kofler, and F. Shafait. Distributed Pattern Recognition
in RapidMiner. In Proceedings of RapidMiner Community Meeting And
Conference, 2010.

[4] D. Borthakur. The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 2007.

[5] C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore. In Ad-
vances in Neural Information Processing Systems 19: Proceedings of the
2006 Conference, page 281. The MIT Press, 2007.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[7] J. Gantz and D. Reinsel. The Digital Universe Decade - Are You Ready?
Technical report, EMC Corporation, 2010.



[8] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google file system. In
ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM,
2003.

[9] D. Gillick, A. Faria, and J. DeNero. Mapreduce: Distributed computing
for machine learning, 2006.

[10] A.J.G. Hey, S. Tansley, and K.M. Tolle. The fourth paradigm: data-
intensive scientific discovery. Microsoft Research, 2009.

[11] C. Lam and J. Warren. Hadoop in Action. Manning Publications, 2010.

[12] G. Makrai and Z. Prekopcsák. Scaling out data preprocessing with Hive.
In Proceedings of the 15th International Student Conference on Electrical
Engineering, 2011.

[13] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE:
Rapid prototyping for complex data mining tasks. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 935–940. ACM, 2006.

[14] S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in Action.
Manning Publications, 2011.


